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Letters

Comments on “Nonuniform Layer Model of a

Millimeter-Wave Phase Shifter”

KAZUHIKO OGUSU AND IKUO TANAKA

In the above paper} Butler et al. have investigated theoretically

the propagation characteristics of the dielectric waveguide with

plasma layer created by an exponentially absorbed optical beam

They have solved numerically the complex wave equation by

using a multipoint boundary-value differential equation solver.

On the other hand, we have already treated the same nonuniform

layer model by using a multilayer staircase method [2]. In this

approach, the actual permittivity profile of the waveguide is

approximated by the finite number of steps. The wave equation is

solved for each step and the complex propagation constant is

determined so as to satisfy the boundary conditions at all inter-

faces. The mathematical formulation is very simple and an accu-

rate solution can be obtained by increasing the number of steps

M. The details of the method can be found in [3] and [4].

In this letter, we would like to present the numerical results

calculated by using the multilayer staircase method and examine

the validity of results given by Butler et al. [1].Fig. 1 shows the

propagation characteristics of the lowest order TM mode in a

silicon waveguide for various plasma decay constants J%. This

numerical example is the same as that in Fig. 10 of [1]. Our exact

values (corresponding to M = W) of the complex propagation

constant were determined by extrapolating the plots as a function

of I/M. The material parameters used in our calculations are the

same as those used by Lee et al. [5]. The results given by Butler

et al. were reproduced from the figure, in their paper [1]. Our

numerical results are in good agreement with their results. How-

ever, there is a small discrepancy for large plasma density

( 210’7 cm-3), as shown in Fig. 1. The reason for the dis-

crepancy has not been made clear at the present stage, For this

comparison, it should be noted that their attenuation values

shown in Fig. 1 are double the original values in their paper. This

discrepancy seems to be due to an incorrect definition of de-

cibels. The attenuation in dB/cm is defined as – 10 log (e- ‘“) =

8.686 a, where a is the attenuation constant with the dimension

of l/cm [6]. Although Butler et al. have described the agreement

with results given by Lee et al. [5] as good, note that there is also

the same mistake in [5] (see eq. (44)).

Reply2 by J. K. Butler, T. 1? W% and M. W. Scott3

Ogmsu and Tanaka correctly state that the definition of decibel

as used in our paper [1] and in [5] is not the standard definition.
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Fig. 1. Propagation characteristics of the lowest order TM mode in a silicon
waveguide of 1-mm thickness at 94 GHz. This munericat example refers to
Fig. 10 of [1]. (a) Phase shift. (b) Attenuation.

As they point out, (44) in [5] defines the decibel to be one-half

the value used by Ogusu and Tanaka. The reason is given in the

sentence before (44), where the authors state that they are plot-

ting wave attenuation and not power attenuation. We adopted

the same procedure so that our results could be directly com-

pared with the results of [5]. However, we agree that the defini-

tion we used is not standard, which we should have explicitly

stated.

We were not aware that the staircase method had been used

previously to compute phase shift and attenuation in a nonuni-

form waveguide in [2]. It appears that the staircase method can

be used to produce relatively accurate results depending upon the
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number of partitions. The major discrepancy between our com-

putations and those of Ogusu and Tanaka appears to be around

carrier densities of 1017 cm– 3, which is near maximum wave

attenuation. We note that the two methods have been compared

by other researchers [7], [8] in regard to accuracy and efficiency.

Nevertheless, we feel that the simultaneous solution of the eigen-

values and differential equations can be more effectively per-

formed by die multipoint boundary-value solver as described in

our
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Comments on “Self-Adjoint Vector Variational

Formulation for Lossy Anisotropic

Dielectric Waveguide”

ROLAND HOFFMANN

In the above paper,l the authors present a “new variational

formula” and its derivation. A careful inspection of the text

shciws that there are a number of errors and wrong conclusions

with the fatal consequence that the final variational formula

[1, eq. (37)] is incorrect. The main fallacy of the authors appears

to be the derivation of the adjoint solution, and the followifig

discussion will be restricted to this point.

The authors state correctly [1, eq. (11)] that, for real inner

product, the eigenvalue of the adjoint problem is Y“ = – y (while

[1, eq. (12)] should read y“ = – y*). The arguments following this

equation are not complete and the conclusions are not clear. It is

in fact true that there are several classes of waveguides with the

property that y as well as – y is a valid eigenvalue of the

problem. But in contrast to the authors method, this may appear

as a solution of [1, eq. (l)] as well as [1, eq. (2)] by taking into

account that the electromagnetic fields, i.e., the eigenvectors are
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different for + y and – y; hence, the matrix B differs. This

property, named bidirectionality, has been thoroughly worked

out in the excellent paper by McIsaac [2], where it turns out that

even in the most generaf case of loss gyrotropic media there are

classes of waveguide which exhibit this property.

In these cases, it will be possible to identify the ac~joint

solution with the eigenvector of the original waveguide belonging

to – y, i.e., the backward-running wave, but we are not allowed

to conclude self-adjointness, as the authors obviously do by

giving the condition [1, eqs. (25), (26)]

H“(x, y) =H(x, y)

E“(x, y) =E(x, y)

for the adjoint solution. This does not hold because the adjoint

solution is the backward-running wave in the original waveguide

whose fields are different from those of the wave running in the

+ z direction with + y.

Having drawn wrong conclusions about the adjoint fields, the

authors neglect the terms with the factor y in [1, eq. (35)].

However, these terms will not cancel, taking into account the

correct adjoint solution. Thus, the final variational formula [ 1, eq.

(37)] is wrong. No doubt it is a stationary formula, but not for

solutions of the correct differential equation including the y

terms

vTxc-%T xH+y(uz xc-% TxH+vTxc-%zx H)

+yz. uzxc –lUZ XH– 6AopoH=o (1)

which is different from the Euler equation [1, eq. (41)] of the

variational formula. .

Thus, this formula will not give good approximations for the

propagation constant y by substituting trial functions for the

magdetic field, nor will it give correct solutions for the magnetic

field applying the Ritz procedure to the stationary formula.

Looking for reasons for the authors error, it is observed

initially that they do not take into account the information given

in [9] of their reference list ([4] here), where in (53) the

backward-running wave has been identified as the adjoint solu-

tiofi, as well as in eq. (18) of their reference [10] (reference [5]

here). Next, it is to be seen that they shift between three-dimen-

sional and two-dimensional field problems in their considera-

tions. Indeed, this can be done, but utmost care has to be taken

because the properties of the corresponding operators may& ffer.

So, while it is self-adjoint for the three-dimensional problem with

a complex symmetric tensor, it is non-self-adjoint for the corre-

spon&g two-dimensional waveguide problem [3]. On the other

hand, they do not try to derive the adjoint operator systematic-

ally by use of [1, eq. (19)], which will always give the correct

result, commencing from the correct two-dimensional wave equa-

tion.

These properties of non-self-adjoint operators are not original.

They axe included in a thorough study of the electromagnetic

variational principle [3]. This method has the advantage that it

starts with physical reality, i.e., considering isotropic/gyrotropic,

lossless/lossy media. The operators describing the physical prob-

lems are studied in detail. Their properties for three-dimensional

as well as two-dimensional problems are derived for both Hermi-

tian (complex) and symmetric (real) inner products. As one result

among many, it has been found that for the problem at hantd no

self-adjoint formulation with symmetric (real) inner product is

possible. It turns out that the only way to obtain a “variational
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