1226

Letters

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 11, NOVEMBER 1986

Comments on “Nonuniform Layer Model of a
Millimeter-Wave Phase Shifter”

KAZUHIKO OGUSU anp IKUO TANAKA

In the above paper,! Butler et al. have investigated theoretically
the propagation characteristics of the dielectric waveguide with
plasma layer created by an exponentially absorbed optical beam.
They have solved numerically the complex wave equation by
using a multipoint boundary-value differential equation solver.
On the other hand, we have already treated the same nonuniform
layer model by using a multilayer staircase method [2]. In this
approach, the actual permittivity profile of the waveguide is
approximated by the finite number of steps. The wave equation is
solved for each step and the complex propagation constant is
determined so as to satisfy the boundary conditions at all inter-
faces. The mathematical formulation is very simple and an accu-
rate solution can be obtained by increasing the number of steps
M. The details of the method can be found in [3] and [4].

In this letter, we would like to present the numerical results
calculated by using the multilayer staircase method and examine
the validity of results given by Butler ez al. [1]. Fig. 1 shows the
propagation characteristics of the lowest order TM mode in a
silicon waveguide for various plasma decay constants W,. This
numerical example is the same as that in Fig. 10 of [1]. Our exact
values (corresponding to M =o0) of the complex propagation
constant were determined by extrapolating the plots as a function
of 1/M. The material parameters used in our calculations are the
same as those used by Lee et al. [5]. The results given by Butler
et al. were reproduced from the figure in their paper [1]. Our
numerical results are in good agreement with their results. How-
ever, there is a small discrepancy for large plasma density
(210" em™3%), as shown in Fig. 1. The reason for the dis-
crepancy has not been made clear at the present stage. For this
comparison, it should be noted that their attenuation values
shown in Fig. 1 are double the original values in their paper. This
discrepancy seems to be due to an incorrect definition of de-
cibels. The attenuation in dB/cm is defined as —10 log(e™2%) =
8.686a, where « is the attenuation constant with the dimension
of 1/cm [6]. Although Butler er al. have described the agreement
with results given by Lee et al. [5] as good, note that there is also
the same mistake in [5] (see eq. (44)).

Reply’ by J. K. Butler, T. F. Wu, and M. W. Scot?

Ogucu and Tanaka correctly state that the definition of decibel
as used in our paper [1] and in [5] is not the standard definition.
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Fig. 1. Propagation characteristics of the lowest order TM mode in a silicon
waveguide of 1-mm thickness at 94 GHz. This numerical example refers to
Fig. 10 of [1]. (a) Phase shift. (b) Attenuation.

As they point out, (44) in [5] defines the decibel to be one-half
the value used by Ogusu and Tanaka. The reason is given in the
sentence before (44), where the authors state that they are plot-
ting wave attenuation and not power attenuation. We adopted
the same procedure so that our results could be directly com-
pared with the results of [5]. However, we agree that the defini-
tion we used is not standard, which we should have explicitly
stated.

We were not aware that the staircase method had been used
previously to compute phase shift and attenuation in a nonuni-
form waveguide in [2]. It appears that the staircase method can
be used to produce relatively accurate results depending upon the
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number of partitions. The major discrepancy between our com-
putations and those of Ogusu and Tanaka appears to be around
carrier densities of 10!7 ¢cm™3, which is near maximum wave
attenuation. We note that the two methods have been compared
by other researchers [7], [8] in regard to accuracy and efficiency.
Nevertheless, we feel that the simultaneous solution of the eigen-
values and differential equations can be more effectively per-
formed by the multipoint boundary-value solver as described in
our paper.
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Comments on “Self-Adjoint Vector Variational
Formulation for Lossy Anisotropic
Dielectric Waveguide”

ROLAND HOFFMANN

In the above paper,! the authors present a “new variational
formula” and its derivation. A careful inspection of the text
shows that there are a number of errors and wrong conclusions
with the fatal consequence that the final variational formula
[1, eq. (37)] is incorrect. The main fallacy of the authors appears
to be the derivation of the adjoint solution, and the following
discussion will be restricted to this point.

The authors state correctly [1, eq. (11)] that, for real inner
product, the eigenvalue of the adjoint problem is y* = — y (while
[1, eq. (12)] should read y“ = — y*). The arguments following this
equation are not complete and the conclusions are not clear. It is
in fact true that theré are several classes of waveguides with the
property that y as well as —y is a valid eigenvalue of the
problem. But in contrast to the authors method, this may appear
as a solution of [1, eq. (1)] as well as [1, eq. (2)] by taking into
account that the electromagnetic fields, i.e., the eigenvectors are
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different for +y and - y; hence, the matrix B differs. This
property, named bidirectionality, has been thoroughly worked
out in the excellent paper by Mclsaac [2], where it turns out that
even in the most general case of loss gyrotropic media there are
classes of waveguide which exhibit this property.

In these cases, it will be possible to identify the adjoint
solution with the eigenvector of the original waveguide belonging
to — v, i.e., the backward-running wave, but we are not allowed
to conclude self-adjointness, as the authors obviously do by
giving the condition [1, egs. (25), (26)]

H(x,y)=H(x,y)

| E“(x,) =E(x,y)

for the adjoint solution. This does not hold because the adjoint
solution is the backward-running wave in the original waveguide
whose fields are different from those of the wave running in the
+ z direction with + vy.

Having drawn wrong conclusions about the adjoint fields, the
authors neglect the terms with the factor y in {1, eq. (35)}
However, these terms will not cancel, taking into account the
correct adjoint solution. Thus, the final variational formula [, eq.
(37)] is wrong. No doubt it is a stationary formula, but not for
solutions of the correct differential equation including the y
terms

Vr X' XH+y(u, X e 'we X H+ 9y X ¢ tu, X H)

+y2ou, X e tu, X H— o*euoH=0

(M
which is different from the Euler equation [1, eq. (41)] of the
variational formula.

Thus, this formula will not give good approximations for the
propagation constant y by substituting trial functions for the
magnetic field, nor will it give correct solutions for the magnetic
field applying the Ritz procedure to the stationary formula.

Looking for reasons for the authors error, it is observed
initially that they do not take into account the information given
in [9] of their reference list ([4] here), where in (53) the
backward-running wave has been identified as the adjoint solu-
tion, as well as in eq. (18) of their reference [10] (reference [5]
here). Next, it is to be seen that they shift between three-dimen-
sional and two-dimensional field problems in their considera-
tions. Indeed, this can be done, but utmost care has to be taken
because the properties of the corresponding operators may differ.
So, while it is self-adjoint for the three-dimensional problem with
a complex symmetric tensor, it is non-self-adjoint for the corre-
sponding two-dimensional waveguide problem [3]. On the other
hand, they do not try to derive the adjoint operator systernati-
cally by use of [1, eq. (19)], which will always give the correct
result, commencing from the correct two-dimensional wave equa-
tion.

These properties of non-self-adjoint operators are not original.
They are included in a thorough study of the electromagnetic
variational principle [3]. This method has the advantage that it
starts with physical reality, i.e., considering isotropic/gyrotropic,
lossless /lossy media. The operators describing the physical prob-
lems are studied in detail. Their properties for three-dimensional
as well as two-dimensional problems are derived for both Hermi-
tian (complex) and symmetric (real) inner products. As one result
among many, it has been found that for the problem at hand no
self-adjoint formulation with symmetric (real) inner product is
possible. It turns out that the only way to obtain a “variational
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